Abstract
The rates of dissociation of several vibrational states of nπ* excited (C–1A′) DCN have been determined via quantum dynamical means in which only the CD stretching and DCN bending motions are treated. The ab initio configuration interaction potential energy surface used in our earlier classical trajectory study of these same dissociation rates was employed in the present study. The results of this quantal study tend to support our earlier prediction that v2→v1 (bending-to-stretching) energy transfer plays an important role in determining the dissociation rates of these vibronic states. Surprisingly, the absolute rates obtained via the quantum method are in quite close agreement with a certain component of the classically determined rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.