Abstract

The quantification of epidermal innervation, which consists primarily of heat-sensitive C-fibers, is emerging as a tool for diagnosing and staging diabetic neuropathy. However, the relationship between changes in heat sensitivity and changes in epidermal innervation has not yet been adequately explored. Therefore, we assessed epidermal nerve fiber density and thermal withdrawal latency in the hind paw of Swiss Webster mice after 2 and 4 weeks of streptozotocin-induced diabetes. Thermal hypoalgesia developed after only 2 weeks of diabetes, but a measurable reduction in PGP9.5-immunoreactive epidermal nerve fiber density did not appear until 4 weeks. These data suggest that impaired epidermal nociceptor function contributes to early diabetes-induced thermal hypoalgesia prior to the loss of peripheral terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call