Abstract

Furosemide, a chloride cotransport inhibitor, reversibly blocked synchronized burst discharges in hippocampal slices without reducing the pyramidal cell response to single electrical stimuli. Images of the intrinsic optical signal acquired during these slice experiments indicated that furosemide coincidentally blocked changes in extracellular space. In urethane-anesthetized rats, systemically injected furosemide blocked kainic acid-induced electrical discharges recorded from cortex. These results suggest that (i) neuronal synchronization involved in epileptiform activity can be dissociated from synaptic excitability; (ii) nonsynaptic mechanisms, possibly associated with furosemide-sensitive cell volume regulation, may be critical for synchronization of neuronal activity; and (iii) agents that affect extracellular volume may have clinical utility as antiepileptic drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.