Abstract

Summary The dissociation of the phenolic groups in a polydisperse, low molecular weight kraft lignin (Indulin AT) was studied in alkaline aqueous solutions in the temperature interval 21–70 °C, using a UV-spectrophotometric method. It was found that at a constant concentration of hydroxide ions, the degree of dissociation was decreasing when the temperature was elevated. Dissociation curves and apparent pΚ 0 values were also calculated for the polydisperse sample at the same conditions, using the van't Hoff and the Poisson-Boltzmann equations. At degrees of dissociation exceeding α ≈ 0.4, the outcome of the theoretical approach showed to be in good agreement with the experimentally obtained results. Furthermore, calculations were performed for different molecular weights of kraft lignin and from this it was found that the apparent pΚ 0 is shifted to higher values by increasing molecular weight, due to an increased electrostatic attraction of the hydrogen ions, which is arising from a less curved surface. Predictions of the dissociation behavior at temperatures reached in the kraft process were performed and under these conditions, higher molecular weight lignin fragments seem never to reach the point of complete dissociation. It was also found that an increase in temperature results in phase separation in kraft lignin solutions with high ionic strengths and pH values close to the pΚ a of the phenolic groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.