Abstract
In response to hormones and mechanical stretch, neonatal rat ventricular myocytes exhibit a hypertrophic response that is characterized by induction of cardiac-specific genes and increased myocardial cell size. Hypertrophic stimuli also activate mitogen-activated protein kinase (MAPK), an enzyme thought to play a central role in the regulation of cell growth and differentiation. To determine if MAPK activation is sufficient for acquisition of the molecular and morphological features of cardiac hypertrophy we compared four agonists that stimulate G protein-coupled receptors. Whereas phenylephrine and endothelin transactivate cardiac-specific promoter/luciferase reporter genes, increase atrial natriuretic factor (ANF) expression, and promote myofilament organization, neither carbachol nor ATP induces these responses. Interestingly, all four agonists activate both the p42 and the p44 isoforms of MAPK. Furthermore, the kinetics of MAPK activation are not different for the hypertrophic agonist phenylephrine and the nonhypertrophic agonist carbachol. Transient transfection of myocytes with dominant-interfering mutants of p42 and p44 MAPK failed to block phenylephrine-induced ANF expression, although Ras-induced gene expression was inhibited by expression of the mutant MAPK constructs. Moreover, PD 098059, an inhibitor of MAPK kinase, blocked phenylephrine-stimulated MAPK activity but not ANF reporter gene expression. Thus, MAPK activation is not sufficient for G protein receptor-mediated induction of cardiac cell growth and gene expression and is apparently not required for transcriptional activation of the ANF gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.