Abstract

The dissociation of acidic molecules within a microscopic water environment is crucial for understanding intermolecular interactions such as hydrogen bonding. This study explores the optimal configurations of HBr(H2O)n=1-7 using hybrid density functional theory. According to the different mixed cluster structures, the corresponding HBr bond lengths, single-point energies, and introduced proton-transfer parameters are computed and analyzed. The findings indicate that a minimum of three water molecules is necessary for the dissociation of HBr. Subsequently, this conclusion is reinforced through the decomposition of energy components between the acid molecule and water clusters, calculation of hydrogen bonding energies, and analysis of vibrational infrared spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.