Abstract

A fundamental concept in neuroscience is the receptive field, the area of space over which a neuron gathers information. Until about 25 years ago, visual receptive fields were thought to be determined entirely by the pattern of retinal inputs, so it was quite surprising to find neurons in primate cortex with receptive fields that changed position every time a saccade was executed [1]. Although this discovery has figured prominently into theories of visual perception, there is still much debate about the nature of the phenomenon: Some studies report forward remapping[1-3], in which receptive fields shift to their postsaccadic locations, and others report convergent remapping, in which receptive fields shift toward the saccade target [4]. These two possibilities can be difficult to distinguish, particularly when the two types of remapping lead to receptive field shifts in similar directions [5], as was the case in virtually all previous experiments. Here we report new data from neurons in primate cortical area V4, where both types of remapping have previously been reported [3,6]. Using an experimental configuration in which forward and convergent remapping would lead to receptive field shifts in opposite directions, we show that forward remapping is the dominant type of receptive field shift in V4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call