Abstract

The correlation between functional connectivity (FC) network segregation, glucose metabolism and cognitive decline has been recently identified. The coupling relationship between glucose metabolism and the intensity of neuronal activity obtained using hybrid PET/MRI techniques can provide additional information on the physiological state of the brain in patients with AD and mild cognitive impairment (MCI). It is a valuable task to use the above rules for constructing biomarkers that are closely related to the cognitive ability of individuals to monitor the pathological status of patients. This study proposed the concept of the energy connectivity (EC) network and its construction method. We hypothesized that the dissociation between energy connectivity and functional connectivity of brain regions is a valid indicator of cognitive ability in patients with dementia. The number of EC-attenuated brain regions (EC-AR) and the number of FC-attenuated brain regions (FC-AR) are obtained by comparison with the normal group, and the dissociation between functional connectivity and energy connectivity is indicated using the ratio of FC-AR to EC-AR for individuals in the disease group. The findings suggest that FC-AR/EC-AR values are accurate predictors of cognitive performance, while taking into account the cognitive recovery due to compensatory effects of the brain. The cognitive ability of some patients with cognitive recovery can also be predicted more accurately. This also indicates that lower functional connectivity and higher energy connectivity between network modules may be one of the important features that maintain cognitive performance. The concept of energy connectivity also has potential to help explore the pathological state of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call