Abstract
Experiments were designed to determine why copulation in the pregnant rabbit does not terminate pregnancy while treatment with ovulatory doses of luteinizing hormone (LH) human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRH) is known to do so. Pregnant rabbits (Day 8) were mated or were injected with hCG (25 IU/doe) or LHRH (1, 10 micrograms/kg). Serial blood samples were collected over the next 72 h and analyzed for content of LH, follicle-stimulating hormone (FSH) and progesterone. At sacrifice, uteri and ovaries from these animals were examined for viability of the embryos and for signs of recent ovulation. Injection of hCG or LHRH into pregnant animals led to ovulation and to patterns of LH, FSH and progesterone secretion like those which precede ovulation in estrous rabbits. However, mating the pregnant does did not lead to ovulation or to any changes in the circulating hormones. To investigate whether the elevated levels of progesterone during pregnancy were responsible for the dissociation of coitus from ovulation, nonpregnant rabbits were injected with progesterone (2 mg/kg) and then mated or injected with hCG or LHRH. In virtually every respect, the numbers of ovulations and the patterns of hormone secretion in the progesterone-treated, nonpregnant rabbits mimicked those observed in the 8-day pregnant animals; injection of hCG or LHRH caused ovulation and hormonal surges while hCG caused ovulation only. Mating did not lead to ovulation or any change in blood levels of LH, FSH or progesterone. Taken together, the results show that the elevated circulating levels of progesterone, characteristic of pregnancy, are probably responsible for the dissociation of copulation from gonadotropin release in pregnant rabbits.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.