Abstract
Experiments using laser-heated diamond anvil cells show that methane (CH4) breaks down to form diamond at pressures between 10 and 50 gigapascals and temperatures of about 2000 to 3000 kelvin. Infrared absorption and Raman spectroscopy, along with x-ray diffraction, indicate the presence of polymeric hydrocarbons in addition to the diamond, which is in agreement with theoretical predictions. Dissociation of CH4 at high pressures and temperatures can influence the energy budgets of planets containing substantial amounts of CH4, water, and ammonia, such as Uranus and Neptune.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.