Abstract

Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c-Met. We previously demonstrated that HGF α-chain hairpin-loop, K1 domain and β-chain are required for c-Met signalling. The sequential phosphorylation of tyrosine residues, from c-Met kinase domain to multidocking regions, is required for HGF-signalling transduction. Herein, we provide evidence that the disconcerted activation of c-Met tyrosine regions fails to induce biological functions. When human cells were incubated with 'mouse HGF', kinase domain activation (i.e. phospho-Tyr-1230/34/35) became evident, but the multidocking site (i.e. Tyr-1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α-chain, or of β-chain, to human c-Met was lower than that of human HGF, as evidenced by HGF-chimera assay. Notably, only four amino acid positions in HGF α-chain hairpin-loop and K1 domain and six positions in β-chain differed between human HGF and mouse HGF. The human-specific amino acids (such as Gln-95 in hairpin-loop, Arg-134 in K1 domain and Cys-561 in β-chain) may be important for accurate c-Met assembly and signalling transduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.