Abstract

The dissociation of benzylamine ions following (i) electron impact (EI) ionization, (ii) multiphoton ionization (MPI) at 266 nm, and (iii) infrared multiple photon absorption (IRMPA) at 9.26 μm is reported. In the EI and MPI experiments, three competitive dissociation pathways are observed. In the IRMPA experiments, benzylamine ions prepared by MPI at low fluences are fragmented very efficiently following irradiation with the focused output from a pulsed CO2 laser. However, in contrast to the EI and MPI results, the IRMPD experiments reveal only a single, lowest energy, dissociation pathway and the fragmentation pattern is consistent with a sequential mechanism in which daughter ions continue to absorb the IR radiation and dissociate. The differences are explained by the different natures of the excitation processes: in IRMPA, the relatively slow up-pumping rate and the long rise time of the CO2 laser pulse restrict the levels of excitation in the dissociating parent ions and favor sequential processes along the lowest energy decomposition pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call