Abstract

The mechanism of dissociation of neutral methyl stearate and its hydrogen atom adduct was investigated by charge inversion mass spectrometry using an alkali metal target. Migrations of functional groups in fatty acid ester ions are often observed during the dissociation of the cations in collisionally activated dissociation (CAD). In the charge inversion spectrum, the main dissociation channels of methyl stearate molecule are the loss of a CH3 radical or a H atom. To identify the source of the CH3 radical and the H atom, the charge inversion spectra of partially deuterated methyl stearate (C17H35COOCD3) were measured. The loss of CH3 occurred through elimination from the methoxy methyl group and that of H occurred through elimination from the hydrocarbon chain of the fatty acid group. In the protonated ester, a simultaneous loss of CH3 (from the methoxy methyl group) and a H atom or a H2 molecule was observed. The charge inversion process gave the dissociation fragments with almost no migration of atoms. Only a few peaks that were structure sensitive were observed in the higher mass region in the charge inversion spectra; these peaks were associated with dissociations of energy-selected neutral species, unlike the case of CAD spectra in which they result from dissociation of ions. Charge inversion mass spectrometry with alkali metal targets provided direct information on the dissociation mechanism of methyl stearate and its hydrogen atom adduct without any migration of functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call