Abstract

Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the manganocene ion, Cp(2)Mn(+) (Cp = eta(5)-cyclopentadienyl). The Cp loss reaction was found to be extremely slow over a large ion internal energy range. By simulating the measured asymmetric time-of-flight peak shapes and breakdown diagram, the 0 K thermochemical dissociation limit for CpMn(+) production was determined to be 9.55 +/- 0.15 eV. A CpMn(+)-Cp bond energy of 3.43 eV was obtained by combining this CpMn(+) + Cp dissociation limit with the Cp(2)Mn adiabatic ionization energy of 6.12 +/- 0.07 eV. Combining the measured onset with known heats of formation of Cp and Mn(+), the Cp-Mn(+) bond energy was determined to be 3.38 +/- 0.15 eV. These results lead to 298 K heats of formation of Cp(2)Mn(+) and CpMn(+) of 863 +/- 7 and 935 +/- 16 kJ/mol, respectively. Finally, by combining these results with a previous measurement of the CpMn(CO)(3) --> CpMn(+) + 3CO + e(-) dissociation limit, we arrive at a new value for Delta(f)H degrees (298K)(CpMn(CO)(3)) of -424 +/- 17 kJ/mol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call