Abstract

The dissociation energetics in the phenol(+)⋯Ar(2)(2π) cluster ion have been investigated using photoionization efficiency and mass analyzed threshold ionization spectroscopy. The appearance energies for the loss of one and two Ar atoms are determined as ∼210 and ∼1115 cm(-1), respectively. The difference between the appearance energy for the first Ar ligand in phenol(+)⋯Ar(2)(2π) and the dissociation energy of the phenol(+)⋯Ar(π) dimer (535cm(-1)) is explained by the isomerization of one π-bound Ar ligand to the OH binding site (H-bond) upon ionization. The energy difference between phenol(+)⋯Ar(2)(2π) and phenol(+)⋯Ar(2)(H/π) could also be estimated to be around 325cm(-1), which corresponds roughly to the difference of the binding energy of a π-bound and H-bound Ar ligands. The binding energy of the H-bound Ar atom in phenol(+)⋯Ar(2)(H/π) is derived to be ∼905cm(-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.