Abstract

The electric discharge spark dissociation of gas CH3I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I+, CH3, CH2, CH, H, and I2 are identified as the dissociation products. The emission band of 505nm I2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I2∗ molecules are formed after the delay time of ∼4.7ns. The formation of I2∗ molecule results from the bimolecular collision of the highly excited iodine atom I∗(4P) and CH3I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH3I.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.