Abstract

Cross sections for the homo-nuclear atom-diatom collision induced dissociations (CIDs): N2 + N and O2 + O are calculated using Quasi-Classical Trajectory (QCT) method on ab initio Potential Energy Surfaces (PESs). A number of studies for these reactions carried out in the past focused on the CID cross section values generated using London-Eyring-Polanyi-Sato PES and seldom listed the CID cross section data. A highly accurate CASSCF-CASPT2 N3 and a new O3 global PES are used for the present QCT analysis and the CID cross section data up to 30 eV relative energy are also published. In addition, an interpolating scheme based on spectroscopic data is introduced that fits the CID cross section for the entire ro-vibrational spectrum using QCT data generated at chosen ro-vibrational levels. The rate coefficients calculated using the generated CID cross section compare satisfactorily with the existing experimental and theoretical results. The CID cross section data generated will find an application in the development of a more precise chemical reaction model for Direct Simulation Monte Carlo code simulating hypersonic re-entry flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.