Abstract

Neurons in the inferior temporal (IT) cortex respond selectively to complex objects, and maintain their selectivity despite partial occlusion. However, relatively little is known about how the occlusion of different shape parts influences responses in the IT cortex. Here, we determine experimentally which parts of complex objects monkeys are relying on in a discrimination task. We then study the effect of occlusion of parts with different behavioral relevance on neural responses in the IT cortex at the level of spiking activity and local field potentials (LFPs). For both spiking activity and LFPs, we found that the diagnostic object parts, which were important for behavioral judgments, were preferentially represented in the IT cortex. Our data show that the effects of diagnosticity grew systematically stronger along a posterior-anterior axis for LFPs, but were evenly distributed for single units, suggesting that diagnosticity is first encoded in the posterior IT cortex. Our findings highlight the power of combined analysis of field potentials and spiking activity for mapping structure to computational function in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call