Abstract

The oxidative metabolic rate may be disproportionately high compared with contractile function in postischemic reperfused myocardium. To study the potential involvement of intracellular calcium transport in high energy expenditure after reperfusion, we determined in isolated rat hearts the effect of ruthenium red, an inhibitor of mitochondrial calcium transport, on recovery of contractile function and oxidative metabolic rate. Hearts subjected to 60 minutes of no-flow ischemia exhibited, at 15 minutes after the onset of reperfusion, poor recovery of left ventricular pressure development to only 7% of the corresponding value measured in control hearts (p less than 0.01). However, myocardial oxygen consumption was recovered to 84% of control (p = NS). The ratio of isovolumic contractile performance (expressed as the product of heart rate and left ventricular pressure development) to myocardial oxygen consumption was severely depressed to 6% of control (p less than 0.01). Supplementation of the perfusate with 6 microM ruthenium red during the initial 40 minutes of reperfusion resulted in a reduction of myocardial oxygen consumption to 65% of the value measured after 15 minutes of reperfusion in hearts reperfused without ruthenium red (p less than 0.01), despite a threefold increase of left ventricular pressure development (p less than 0.05). Oxidation of both palmitate and glucose was reduced to a comparable extent by ruthenium red. The ratio of contractile performance to myocardial oxygen consumption increased progressively during infusion of ruthenium red and did not differ further from control hearts after 30 minutes of reperfusion. Cumulative myocardial release of creatine kinase was reduced by 47% (p less than 0.05) in hearts reperfused with ruthenium red-containing medium. The results provide circumstantial evidence for the hypothesis suggesting that enhanced energy expenditure by intracellular calcium transport may be involved in the mechanisms underlying the dissociation between left ventricular performance and myocardial oxidative metabolic rate early after postischemic reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.