Abstract

Abnormal neural activity in the cerebellum has been implicated in hearing impairments, but the effects of long-term hearing loss on cerebellar function are poorly understood. To further explore the role of long-term bilateral sensorineural hearing loss on cerebellar function, we investigated hearing loss-induced changes among neural networks within cerebellar subregions and the changes in cerebellar-cerebral connectivity patterns using resting-state functional MRI. Twenty-one subjects with long-term bilateral moderate-to-severe sensorineural hearing loss and 21 matched controls with clinically normal hearing underwent MRI scanning and a series of neuropsychological tests targeting cognition and emotion. Voxel-wise functional connectivity (FC) analysis demonstrated decreased couplings between the cerebellum and other cerebral areas, including the temporal pole (TP), insula, supramarginal gyrus, inferior frontal gyrus (IFG), medial frontal gyrus, and thalamus, in long-term bilateral sensorineural hearing loss patients. An ROI-wise FC analysis found weakened interregional connections within cerebellar subdivisions. Moreover, there was a negative correlation between anxiety and FC between the left cerebellar lobe VI and left insula. Hearing ability and anxiety scores were also correlated with FC between the left cerebellar lobe VI and left TP, as well as the right cerebellar lobule VI and left IFG. Our results suggest that sensorineural hearing loss disrupts cerebellar-cerebral circuits, some potentially linked to anxiety, and interregional cerebellar connectivity. The findings contribute to a growing body showing that auditory deprivation caused by cochlear hearing loss disrupts not only activity with the classical auditory pathway but also portions of the cerebellum that communicates with other cortical networks.

Highlights

  • According to the World Health Organization (WHO), hearing loss (HL) of sensorineural origin affects approximately 466 million people (5% of the world’s population) and ranks as the fifth leading age-related disability [1]

  • There was no significant difference in pure tone hearing thresholds between left and right ears in the Sensorineural hearing loss (SNHL) group (Figure 1(c))

  • No significant differences were observed between the two groups on the Mini-Mental State Examination (MMSE), Symbol Digit Modalities Test (SDMT), and Auditory Verbal Learning Test (AVLT) tests

Read more

Summary

Introduction

According to the World Health Organization (WHO), hearing loss (HL) of sensorineural origin affects approximately 466 million people (5% of the world’s population) and ranks as the fifth leading age-related disability [1]. Sensorineural hearing loss (SNHL) typically results from damage to outer and inner hair cells, spiral ganglion neurons, and auditory nerve fibers which project to the central auditory system [2, 3]. The cerebellum has traditionally been thought of as being involved in motor control; emerging evidence indicates that the cerebellum plays important roles in sensory, cognitive, and emotional processes [12,13,14]. The cerebellum projects to other nuclei in the central auditory pathway

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call