Abstract

The human visual system consists of multiple topographic maps that extend from the early visual cortex (EVC) along the dorsal and ventral processing streams. Responses to illusory shapes within these maps have been demonstrated in the ventral stream areas, in particular the lateral occipital complex (LOC). Recently, the intraparietal sulcus (IPS) of the dorsal stream has been linked to the processing of illusory shapes defined by motion. It remains unclear whether the topographically organized parietal areas also respond to stationary illusory shapes, which would suggest their generic role in representing illusory content. In the current study we measured brain responses using fMRI while 30 human participants (12 male) observed flickering inducers around the fixation task. The inducers either formed an illusory diamond in the center, a triangle in the left or right hemifield, or were inverted such that no illusory figure was formed. We compared responses of parietal regions IPS0-IPS5 and SPL1 to each illusory figure with the nonillusory condition. To determine the role of attentional modulation on illusory shape responses we manipulated the difficulty of the fixation task. Our results show that all IPS areas responded to illusory shapes. The more posterior areas IPS0-IPS3 additionally displayed a preference toward contralateral shapes, while the more anterior areas IPS4 and IPS5 showed response attenuation with increased task difficulty. We suggest that the IPS can represent illusory content generated not only by moving, but also by stationary stimuli, and that there is a functional dissociation between attention-dependent anterior and spatially specific posterior topographic maps.SIGNIFICANCE STATEMENT The traditional view of the ventral visual pathway being solely responsible for representation of objects has recently been challenged by demonstrating illusory shape representation within the dorsal visual pathway with moving bistable stimuli. Our results provide evidence for the dorsal stream contribution to representing not only moving, but also stationary illusory shapes. Our results also show a functional subdivision along the topographic maps, with spatially specific shape responses in the more posterior, and attention-dependent responses in the more anterior areas. These findings have implications for our understanding of the relationship between attention and grouping in healthy individuals and neuropsychological patients. Furthermore, IPS areas should be considered in theoretical accounts and models of how subjective content is generated in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call