Abstract

The terahertz (THz) region has much appeal for differentiating between hydrate systems and for physically characterizing pharmaceutical drug materials. The present study employs THz absorption spectroscopy to investigate the effect of heating on dehydration and hydration in α-lactose monohydrate. Distinctive THz absorption spectra were observed following various heating durations. The THz absorption spectra for α-lactose monohydrate and anhydrous α-lactose exhibit clear differences. Pure α-lactose monohydrate displays clear absorption peaks at 0.53, 1.05, 1.11, 1.33, and 1.56 THz. The complete dehydration of α-lactose monohydrate takes only 15 mins at 145°C (418 K). Moreover, the THz refractive index of α-lactose monohydrate decreases during dehydration. The dehydration of α-lactose monohydrate was also studied using Beer–Lambert law to compare THz absorption spectra as functions of the heating time. The absorption coefficient spectra recorded at 0.53 and 1.35 THz for α-lactose monohydrate after different dehydration times vary linearly with the remaining water content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call