Abstract

A consistent body of literature reported that Parkinson’s disease (PD) is marked by severe deficits in temporal processing. However, the exact nature of timing problems in PD patients is still elusive. In particular, what remains unclear is whether the temporal dysfunction observed in PD patients regards explicit and/or implicit timing. Explicit timing tasks require participants to attend to the duration of the stimulus, whereas in implicit timing tasks no explicit instruction to process time is received but time still affects performance. In the present study, we investigated temporal ability in PD by comparing 20 PD participants and 20 control participants in both explicit and implicit timing tasks. Specifically, we used a time bisection task to investigate explicit timing and a foreperiod task for implicit timing. Moreover, this is the first study investigating sequential effects in PD participants. Results showed preserved temporal ability in PD participants in the implicit timing task only (i.e., normal foreperiod and sequential effects). By contrast, PD participants failed in the explicit timing task as they displayed shorter perceived durations and higher variability compared to controls. Overall, the dissociation reported here supports the idea that timing can be differentiated according to whether it is explicitly or implicitly processed, and that PD participants are selectively impaired in the explicit processing of time.

Highlights

  • Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor disorders, such as bradykinesia, tremor, rigidity, olfactory loss, sleep, behavioral and cognitive impairment (Nalls et al, 2015)

  • This interaction was explained by the fact that participants were faster after the long foreperiod compared to the short foreperiod in the variable foreperiod paradigm (t(34) = 8.97, p < 0.001, Cohen’s d = 1.56), while there was no difference between the two foreperiods in the fixed paradigm (t(34) = 1.1, p = 0.27, Cohen’s d = 0.19)

  • Inspection of the data showed that participants were faster at the short foreperiod when it was kept fixed across the block as compared to when it was intermixed across trials with the long foreperiod (t(34) = 5.67, p < 0.001, Cohen’s d = 0.98)

Read more

Summary

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor disorders, such as bradykinesia, tremor, rigidity, olfactory loss, sleep, behavioral and cognitive impairment (Nalls et al, 2015) This heterogeneous disease involves dysfunctions in several circuits, including the loss of dopaminergic neurons in the substantia nigra pars compacta, which has strong implications for the efficacy of the nigrostriatal dopaminergic pathway (Alberico et al, 2017), the loss of dopaminergic neurons in the ventral tegmental area, Explicit and Implicit Timing in Parkinson which mostly affects the mesocortical pathway to the prefrontal cortex (Parker et al, 2015a; Kim et al, 2017), and the degeneration of the cholinergic system, which helps explain the cognitive symptoms of patients with PD (Calabresi et al, 2006).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call