Abstract

Abstract High-resolution electron microscopy has been used to characterize disclocations in CdTe which were induced by argon ion-beam milling. The core structures of the 30° and 90° partial dislocations resulting from the dissociation of 60° dislocations have been analysed with assistance from multislice image simulations, and it is found that various structural models (glide set and shuffle set) can be differentiated. Chemical information (α or β form) about the dislocations can be deduced by first determining the Burgers vectors of the dislocations and the crystal polarity. Experimentally, for a 60° dislocation dissociated with an intrinsic stacking fault, the 30° partial is found to be the glide set, independent of its chemical nature; however, no shuffle set is found. For a 60° dislocation dissociated with an extrinsic stacking fault, the 90° partial is usually kinked and therefore much more difficult to recognize. In one particular example, however, it was found to be the glide set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.