Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder experiencing psychological and somatic symptoms. Here, we explored the link between the individual variation in functional connectome and anxiety symptoms, especially psychological and somatic dimensions, which remains unknown. In a sample of 118 GAD patients and matched 85 healthy controls (HCs), we used multivariate distance-based matrix regression to examine the relationship between resting-state functional connectivity (FC) and the severity of anxiety. We identified multiple hub regions belonging to salience network (SN) and default mode network (DMN) where dysconnectivity associated with anxiety symptoms (P < 0.05, false discovery rate [FDR]-corrected). Follow-up analyses revealed that patient's psychological anxiety was dominated by the hyper-connectivity within DMN, whereas the somatic anxiety could be modulated by hyper-connectivity within SN and DMN. Moreover, hypo-connectivity between SN and DMN were related to both anxiety dimensions. Furthermore, GAD patients showed significant network-level FC changes compared with HCs (P < 0.01, FDR-corrected). Finally, we found the connectivity of DMN could predict the individual psychological symptom in an independent GAD sample. Together, our work emphasizes the potential dissociable roles of SN and DMN in the pathophysiology of GAD's anxiety symptoms, which may be crucial in providing a promising neuroimaging biomarker for novel personalized treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.