Abstract

The Rpb4 and Rpb7 subunits of yeast RNA polymerase II form a heterodimeric complex essential for promoter-directed transcription initiation in a reconstituted system. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding. Sequence and structure-based alignments revealed a possible OB-fold single-strand nucleic acid-binding motif in Rpb7. Purified Rpb4-Rpb7 complex exhibited both single-strand DNA- and RNA-binding activities, and a small deletion in the putative OB-fold nucleic acid-binding surface of Rpb7 abolished binding activity without affecting the stability of the Rpb4-Rpb7 complex or its ability to associate with polymerase. The same mutation destroyed the transcription activity of the Rpb4-Rpb7 complex. A separate deletion elsewhere in the OB-fold motif of Rpb7 also blocked transcription but did not affect nucleic acid binding, suggesting that the OB-fold of Rpb7 mediates both DNA-protein and protein-protein interactions required for productive initiation.

Highlights

  • Cellular RNA polymerases contain a core set of subunits exemplified by the ␣, ␤, and ␤Ј subunits of the eubacterial enzyme

  • The S1 protein exemplifies the OB-fold (22), a structure found in many other proteins with single-stranded nucleic acid-binding activity (23, 24) (Fig. 1a)

  • In this study we focused on the nucleic acid-binding activity of the yeast Rpb4-Rpb7 complex and on its role in transcription initiation

Read more

Summary

Introduction

Cellular RNA polymerases contain a core set of subunits exemplified by the ␣, ␤, and ␤Ј subunits of the eubacterial enzyme. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.