Abstract

The human brain is equipped with complex mechanisms to track the changing probability of events in time. While the passage of time itself usually leads to a mounting expectation, context can provide additional information about when events are likely to happen. In this study we dissociate these two sources of temporal expectation in terms of their neural correlates and underlying brain connectivity patterns. We analysed magnetoencephalographic (MEG) data acquired from N = 24 healthy participants listening to auditory stimuli. These stimuli could be presented at different temporal intervals but occurred most often at intermediate intervals, forming a contextual probability distribution. Evoked MEG response amplitude was sensitive to both passage of time (time elapsed since the cue) and contextual probability, albeit at different latencies: the effects of passage of time were observed earlier than the effects of context. The underlying sources of MEG activity were also different across the two types of temporal prediction: the effects of passage of time were localised to early auditory regions and superior temporal gyri, while context was additionally linked to activity in inferior parietal cortices. Finally, these differences were modelled using biophysical (dynamic causal) modelling: passage of time was explained in terms of widespread gain modulation and decreased prediction error signalling at lower levels of the hierarchy, while contextual expectation led to more localised gain modulation and decreased prediction error signalling at higher levels of the hierarchy. These results present a comprehensive account of how independent sources of temporal prediction may be differentially expressed in cortical circuits.

Highlights

  • The human brain is equipped with complex mechanisms to track the changing probability of events in time

  • We found that temporal expectation of tones could be localised to sources corresponding to the primary auditory cortex (A1), superior temporal gyrus (STG) and inferior parietal cortex (IPC)

  • We employed a two-tone paradigm where onsets of the second tone were normally distributed along five inter-stimulus intervals, and we looked at how the second tone in these pairs was processed as a function of elapsed time, and of the likelihood of the tone arriving at that particular inter-stimulus interval

Read more

Summary

Introduction

The human brain is equipped with complex mechanisms to track the changing probability of events in time. While the passage of time itself usually leads to a mounting expectation, context can provide additional information about when events are likely to happen. In this study we dissociate these two sources of temporal expectation in terms of their neural correlates and underlying brain connectivity patterns. We analysed magnetoencephalographic (MEG) data acquired from N=24 healthy participants listening to auditory stimuli. These stimuli could be presented at different temporal intervals but occurred most often at intermediate intervals, forming a contextual probability distribution. Evoked MEG response amplitude was sensitive to both passage of time and contextual probability, albeit at different latencies: the effects of passage of time were observed earlier than the effects of context.

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.