Abstract

Cocaine addiction is a chronically relapsing brain disease, but its neural basis is not yet well understood. Clinical reports underscore the possible importance of associative processes for regulating at least some aspects of cocaine addiction. The present study reports the effects of reversible lidocaine-induced inactivation of rostral basolateral amygdala (rBLA) and caudal basolateral amygdala (cBLA) regions on the maintenance and reinstatement of drug-seeking behavior in rats trained to self-administer 1 mg/kg cocaine under a second order schedule of drug delivery. Both regions of the basolateral amygdala were investigated because they have dissociable effects on cognitive task performance. Results demonstrated that after self-administration training and a period of extinction and abstinence, lidocaine inactivation of the rBLA and cBLA attenuated the reinstatement of drug-seeking behavior induced by cocaine-associated cues examined in conjunction with a single priming injection of cocaine. In contrast, lidocaine inactivation of only the rBLA blocked reinstatement of drug-seeking behavior induced by cocaine-associated cues examined alone. Additional differences were shown during cocaine maintenance testing where inactivation of only the cBLA attenuated drug-seeking behavior. Drug intake was not altered. Thus, the rBLA and cBLA appear to selectively and dissociably regulate drug-seeking behavior under conditions of cocaine abstinence (cue-induced reinstatement) and repeated cocaine use (maintenance), respectively. These findings suggest that the basolateral amygdala may be more functionally heterogeneous than commonly thought for regulating drug-seeking behavior. The basis for this dissociation might be related to neuroanatomical connections of the rBLA and cBLA with segregated, but parallel, corticostriatalpallidothalamic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.