Abstract

Capacitor current active damping is a common method to achieve dissipation for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> -filtered grid-connected converters using grid-side current control. However, the dissipative characteristic of converter output admittance near the critical frequency can easily be jeopardized by the filter parameter deviation. Besides, the grid voltage feedforward is often overlooked when designing dissipativity, which is, however, preferred to improve transient performance. To tackle these challenges, a multisampled current control scheme is proposed in this article. By combining the capacitor current active damping and the capacitor voltage feedforward, not only the dissipation can be achieved below the Nyquist frequency but also the dissipativity robustness against the filter parameter deviation is enhanced. Besides, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> -filter resonant frequency can be designed near the critical frequency, which simplifies the internal stability design. Finally, the effectiveness of the proposed method is verified through the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.