Abstract
In this paper, we consider a power distribution system consisting of a straight feeder line. A nonlinear ordinary differential equation (ODE) model is used to describe the voltage distribution profile over the feeder line. At first, we show the dissipativity of the subsystems corresponding to active and reactive powers. We also show that the dissipation rates of these subsystems coincide with the distribution loss given by a square of current amplitudes. Moreover, the entire distribution system is decomposed into two subsystems corresponding to voltage amplitude and phase. As a main result, we prove the dissipativity of these subsystems based on the decomposition. As a physical interpretation of these results, we clarify that the phenomena related to the gradients of the voltage amplitude and phase are induced in a typical power distribution system from the dissipation equalities. Finally, we discuss a reduction of distribution losses based on the dissipation rate of the subsystem of voltage amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.