Abstract
This article is concerned with the problem of dissipativity and stability analysis for a class of neural networks (NNs) with time-varying delays. First, a new augmented Lyapunov-Krasovskii functional (LKF), including some delay-product-type terms, is proposed, in which the information on time-varying delay and system states is taken into full consideration. Second, by employing a generalized free-matrix-based inequality and its simplified version to estimate the derivative of the proposed LKF, some improved delay-dependent conditions are derived to ensure that the considered NNs are strictly ( Q , S , R )- γ -dissipative. Furthermore, the obtained results are applied to passivity and stability analysis of delayed NNs. Finally, two numerical examples and a real-world problem in the quadruple tank process are carried out to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.