Abstract

In this paper, the problem of dissipativity analysis is discussed for discrete-time stochastic neural networks with time-varying discrete and finite-distributed delays. The discretized Jensen inequality and lower bounds lemma are adopted to deal with the involved finite sum quadratic terms, and a sufficient condition is derived to ensure the considered neural networks to be globally asymptotically stable in the mean square and strictly (Q, S, R)-y-dissipative, which is delay-dependent in the sense that it depends on not only the discrete delay but also the finite-distributed delay. Based on the dissipativity criterion, some special cases are also discussed. Compared with the existing ones, the merit of the proposed results in this paper lies in their reduced conservatism and less decision variables. Three examples are given to illustrate the effectiveness and benefits of our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.