Abstract

This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process having the same initial state and equal final pressure or volume. Based on the concept of identical processes, numerical simulations of adiabatic irreversible compression and expansion were performed, enabling a better understanding of differences between configuration and dissipative work. The positive nature of the dissipative work was used to discuss the case where the dissipated energy ends up in the surroundings, while the invariance of such work under a system–surroundings interchange enabled the resulting modification in thermodynamical quantities to be determined. The ideas presented in this study are primarily intended for undergraduate students with a background in thermodynamics, but they may also be of interest to graduate students and teachers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call