Abstract

Reactions involving adsorbates on metallic surfaces and impurities in bulk metals are ubiquitous in a wide range of technological applications. The theoretical modeling of such reactions presents a formidable challenge for theory because nuclear quantum effects (NQEs) can play a prominent role and the coupling of the atomic motion with the electrons in the metal gives rise to important non-adiabatic effects (NAEs) that alter atomic dynamics. In this work, we derive a theoretical framework that captures both NQEs and NAEs and, due to its high efficiency, can be applied to first-principles calculations of reaction rates in high-dimensional realistic systems. More specifically, we develop a method that we coin ring polymer instanton with explicit friction (RPI-EF), starting from the ring polymer instanton formalism applied to a system-bath model. We derive general equations that incorporate the spatial and frequency dependence of the friction tensor and then combine this method with the ab initio electronic friction formalism for the calculation of thermal reaction rates. We show that the connection between RPI-EF and the form of the electronic friction tensor presented in this work does not require any further approximations, and it is expected to be valid as long as the approximations of both underlying theories remain valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call