Abstract

We propose and investigate a method for identifying timescales of dissipation in nonequilibrium steady states modeled as discrete-state Markov jump processes. The method is based on how the irreversibility—measured by the statistical breaking of time-reversal symmetry—varies under temporal coarse-graining. We observe a sigmoidal-like shape of the irreversibility as a function of the coarse-graining time whose functional form we derive for systems with a fast driven transition. This theoretical prediction allows us to develop a method for estimating the dissipative time scale from time-series data by fitting estimates of the irreversibility to our predicted functional form. We further analyze the accuracy and statistical fluctuations of this estimate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call