Abstract

Supramolecular chemistry is moving into a direction in which the composition of a chemical equilibrium is no longer determined by thermodynamics but by the efficiency with which kinetic states can be populated by energy consuming processes. Herein, we show that DNA is ideally suited for programming chemically fueled dissipative self-assembly processes. Advantages of the DNA-based systems presented in this study include a perfect control over the activation site for the chemical fuel in terms of selectivity and affinity, highly selective fuel consumption that occurs exclusively in the activated complex, and a high tolerance for the presence of waste products. Finally, it is shown that chemical fuels can be used to selectively activate different functions in a system of higher complexity embedded with multiple response pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.