Abstract

The paper addresses the bistability caused by spontaneous symmetry breaking bifurcation in a one-dimensional periodically corrugated nonlinear waveguide pumped by coherent light at normal incidence. The formation and the stability of the switching waves connecting the states of different symmetries are studied numerically. It is shown that the switching waves can form stable resting and moving bound states (dissipative solitons). The protocols of the creation of the discussed nonlinear localized waves are suggested and verified by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.