Abstract

We generalized the well-known Lugiato-Lefever Equation to unify the description of combs and localized structures formation in nonlinear optical systems such as Kerr micro-resonators (passive systems) and Quantum Cascade Lasers (QCL) (active systems). In particular this model was applied to the study of pattern formation in a unidirectional ring QCL driven by a coherent injected field. We showed the existence of Dissipative Solitons (DS) and Turing rolls associated to standard and harmonic Optical Frequency Combs (OFC) in the system. We also provided a proof of principle demonstration of the possibility to deterministically control the spectral properties of these OFC by switching-on one or more DS with suitable addressing pulses. These results considerably increase the theoretical insight in chip-scale combs sources in the mid-infrared region of the electromagnetic spectrum for timely applications in the field of e.g. high resolution and/or time resolved molecular spectroscopy, long range and high bit rate wireless communications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.