Abstract

The Ginzburg-Landau (GL) equation is in general not integrable by the inverse scattering method and support solitary-wave solution, called dissipative soliton (DS). We numerically demonstrate that, a DS can radiate dispersive waves (DWs) in presence of third-order dispersion (TOD). We propose a silicon-based active waveguide that excites stable DSs. Energy can be transferred from these stable DS to linear DWs when a resonance condition is achieved. The dynamics of the DS is governed by the complex GL equation which we solve numerically for different operational parameters. Numerical solution of the perturbed GL equation exhibits multiple radiations, when the stable DS is allowed to propagate through a large distance. We theoretically derive a special phase-matching relation that can predict the frequencies of these multiple radiations, which are found numerically. In our theoretical and numerical calculations we include the role of free carriers which appear inside semiconductor waveguides as a consequence of two-photon absorption (TPA). We demonstrate that apart from TOD, TPA and gain dispersion are two additional parameters that can control the radiation emitted by DS. The DS-mediated radiation is different in nature and demands an intuitive understanding. In this work we try to provide some insights of this fascinating radiation phenomenon by elaborate analytical and numerical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call