Abstract

In this paper, we study the driven-dissipative p-spin models for $p\geq 2$. In thermodynamics limit, the equation of motion is derived by using a semiclassical approach. The long-time asymptotic states are obtained analytically, which exhibit multi-stability in some regions of the parameter space. The steady state is unique as the number of spins is finite. But the thermodynamic limit of the steady-state magnetization displays nonanalytic behavior somewhere inside the semiclassical multi-stable region. We find both the first-order and continuous dissipative phase transitions. As the number of spins increases, both the Liouvillian gap and magnetization variance vanish according to a power law at the continuous transition. At the first-order transition, the gap vanishes exponentially accompanied by a jump of magnetization in thermodynamic limit. The properties of transitions depend on the symmetry and semiclassical multistability, being qualitatively different among $p=2$, odd $p$ ($p\geq 3$) and even $p$ ($p\geq 4$).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.