Abstract

For the first time dissipative particle dynamics (DPD) simulations were employed to study the microstructures of an emulsion with alternating copolymers as the emulsifier. To model the alternating copolymers, an angular force was introduced by determining the stiffness parameters based on a linear quantitative structure–property relationship model. We studied the kinetics of emulsion formation by analyzing the time evolution of pressure, temperature, droplet number, the mean end-to-end distance and the morphologies of the emulsified oil droplets. The effect of emulsifier concentration on the mesostructures of the emulsified oil droplets was also discussed and the simulation results can interpret the experimental results on the microscopic level. Accordingly, the DPD method is a powerful tool for investigating emulsions with alternating copolymers and may be extended to drug delivery systems containing these copolymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.