Abstract

ABSTRACTThe effects of temperature-dependent thermophysical properties on droplet flow characteristics in a parallel-plate channel at submicron scale are investigated. The dissipative particle dynamics method with many-body (MDPD) and energy conservation (DPDe) configurations (MDPDe) was used. Droplet flows were simulated to study the effects of the temperature difference between top and bottom walls, body force on MDPDe particles, and wall-wetting conditions. The effects on the droplet flow were discussed. Droplet flows with a subzero wall temperature were simulated. An ice layer was formed on the wall. Its thickness and shape changed depending on surface wetting, temperature gradient, and body force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call