Abstract

We present the derivation of coarse-grained force fields for two types of polymers, polyethylene (PE), and cis-polybutadiene (cis-PB), using the concept of potential of mean force. Coarse-grained force fields were obtained from microscopic simulations for several coarse-graining levels, i.e., different number of monomers lambda per mesoscopic unit called "bead." These force fields are then used in dissipative particle dynamics (DPD) simulations to study structural and dynamical properties of polymer melts of PE and cis-PB. The radial distribution functions g(R), the end-to-end distance R0, the end-to-end vector relaxation time tau, and the chain center of mass self-diffusion D(CM), are computed for different chain lengths at different coarse-graining factor lambda. Scaling laws typical of the Rouse regime are obtained for both polymers for chain lengths ranging from 6 to 50 beads. It is found that the end-to-end distance R0 obtained from DPD simulations agree well with values obtained from both microscopic simulations and experiments. The dependence of the friction coefficient used in DPD simulations versus the coarse-graining level is discussed in view of the overall scaling of the dynamical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.