Abstract

Thin deformable membranes are encountered in a number of microfluidics-based applications. These are often employed for enhancing sorting, mixing, cross-diffusion transport, etc. Microfluidic systems with deformable membranes can be better understood by employing simple models and efficient computational procedures. In this paper, we present a dissipative particle dynamics model to simulate the interaction between a deformable membrane and fluid flow in a two-dimensional microchannel. The membrane is modeled as a bead-spring system with both extensional and torsional springs to simulate extensional stiffness and bending rigidity, respectively. By performing detailed simulations on a membrane pinned at both ends and oriented parallel to the flow, we observe different steady state conformations. These membrane deflections are found to be relatively large for low bending stiffnesses and small for high stiffnesses. The membrane was found to exhibit a simple bowing out mode for high stiffness values and more complex conformations at lower stiffnesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call