Abstract
Dissipative particle dynamics with energy conservation (eDPD) was used to investigate the effect of variable thermal properties on natural convection in liquid water over a wide range of Rayleigh Numbers. The problem selected for this study was a differential heated cavity. The eDPD results were compared to the finite volume solutions and the eDPD method predicted the effects of temperature-dependent conductivity and viscosity on temperature and flow fields throughout the cavity properly. The eDPD temperature-dependent model was able to capture the basic features of natural convection, such as development of thermal boundary layers, and development of natural convection circulation cells within the cavity. The eDPD results experienced some degree of compressibility at high values of Ra numbers (Ra=105) and this problem was resolved by tuning the speed of sound of the eDPD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.