Abstract

Dissipative particle dynamics (DPD) is used to investigate the flow passing through a three-dimensional sphere within two parallel plates. The sphere and the plates are composed of frozen DPD particles which are in an equilibrium state. The fluid is driven by a dimensionless external force exerting on each fluid particle. The force on the sphere is computed from the total particles consistituting the sphere. After the flow is fully developed, the obtained results, including the force exerted on the sphere is computed, and then we can calculate the drag coefficient. The accuracy and the reliability are compared with classical results. The results show that the DPD method can predict drag coefficient accurately when Re is less than 100. However, when Re is bigger than 100, the results deviate from analytical values, which is due mainly to the fluid compressibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call