Abstract

Asphaltenes are the main substances that stabilize emulsions during the production, processing, and transport of crude oil. The purpose of this research is to investigate the process of asphaltenes forming interfacial films at the oil-water interface by means of dissipative particle dynamics (DPD) and the effect of asphaltenes of different structures on the oil-water interface during the formation of interfacial film. It is demonstrated that the thickness of the interfacial film formed at the oil-water interface gradually increases as the asphaltene concentration rises and the amount of asphaltene adsorbed at the oil-water interface gradually multiplies. Both the number and type of heteroatoms in asphaltenes affect the interfacial behavior of asphaltenes. The interface activity of asphaltenes can be enhanced by increasing the number of heteroatoms in the asphaltene, and the type of heteroatom affects as well the interfacial activity of the asphaltene as it affects the aggregation behavior of the asphaltene in the system. As the number of asphaltene aromatic rings increases, the oil-water interfacial tension (IFT) trends down gradually, while the effect of alkyl side chains on the reduction of IFT of asphaltenes is different, and asphaltenes with medium length alkyl side chains can reduce IFT more efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call