Abstract

We study macroscopic quantum tunneling of interfaces separating normal and superconducting regions in type-I superconductors. A mathematical model is developed that describes dissipative quantum escape of a two-dimensional manifold from a planar potential well. It corresponds to, e.g., a current-driven quantum depinning of the interface from a grain boundary or from an artificially manufactured pinning layer. Effective action is derived and instantons of the equations of motion are investigated. The crossover between thermal activation and quantum tunneling is studied and the crossover temperature is computed. Our results, together with recent observation of nonthermal low-temperature magnetic relaxation in lead, suggest the possibility of a controlled measurement of quantum depinning of the interface in a type-I superconductor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call