Abstract

Josephson effects are commonly studied in quantum systems in which dissipation or noise can be neglected or do not play a crucial role. In contrast, here we discuss a setup where dissipative interactions do amplify a photonic Josephson current, opening a doorway to dissipation-enhanced sensitivity of quantum-optical interferometry devices. In particular, we study two coupled nanolasers subjected to phase coherent drivings and coupled by a coherent photon tunneling process. We describe this system by means of a Fokker–Planck equation and show that it exhibits an interesting non-equilibrium phase diagram as a function of the coherent coupling between nanolasers. As we increase that coupling, we find a non-equilibrium phase transition between a phase-locked (PL) and a non-phase-locked (NPL) steady-state, in which phase coherence is destroyed by the photon tunneling process. In the coherent, PL regime, an imbalanced photon number population appears if there is a phase difference between the nanolasers, which appears in the steady-state as a result of the competition between competing local dissipative dynamics and the Josephson photo-current. The latter is amplified for large incoherent pumping rates and it is also enchanced close to the lasing phase transition. We show that the Josephson photocurrent can be used to measure optical phase differences. In the quantum limit, the accuracy of the two nanolaser interferometer grows with the square of the photon number and, thus, it can be enhanced by increasing the rate of incoherent pumping of photons into the nanolasers.

Highlights

  • Among the striking effects of quantum coherence, the Josephson effect is one of widest used in nowadays technologies [1]

  • As we increase that coupling, we find a non-equilibrium phase transition between a phase-locked (PL) and a non-phase-locked (NPL) steady-state, in which phase coherence is destroyed by the photon tunneling process

  • PL regime, an imbalanced photon number population appears if there is a phase difference between the nanolasers, which appears in the steady-state as a result of the competition between competing local dissipative dynamics and the Josephson photo-current

Read more

Summary

10 March 2021

Keywords: quantum optics, nanolasers, quantum metrology, Josephson effect, non-equilibrium phase transitions Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Introduction
Theoretical description of coherently coupled nanolasers
Semiclassical Fokker–Planck equation
Dissipative phase transition induced by coherent photon tunneling
Josephson photo-current
The photonic Josephson current as a metrological resource
Conclusions & outlook
Reduced Fokker–Planck equation for two nanolasers
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call