Abstract

AbstractA non‐Newtonian model is developed by considering the flow of non‐Newtonian Casson fluid past an expanding cylinder embedded in a porous medium. The novelty arises because of the conjunction of dissipative heat, and the additional heat source that enriches the heat transport phenomenon significantly. The application of the study is vital due to the flow of blood through the artery, a physiological study. Therefore, the study of Casson fluid plays an important role. The nonlinear partial differential equations that appeared in the formulation are now renovated to the coupled nonlinear ordinary differential equations. However, a numerical technique associated with shooting‐based followed by Runge–Kutta fourth‐order is employed for the solution of these transformed equations. The uniqueness of diverse pertinent parameters on the flow phenomena is scrutinized through graphs and numerically simulated results presented in tables. The important observations are as follows; the magnetic parameter and permeability augment the shear rate coefficients, whereas the Casson parameter rendered the opposite impact. Furthermore, the non‐Newtonian Casson parameter retards the fluid temperature, and the curvature parameter significantly enhances it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.